
 

 

 
 
 
 
 
 

A Computational Framework for Multi-Scale Simulations of Weakly 
Ionized Plasmas 

 
Final Report  

 
 

 
 
 

by 
 

V.I.Kolobov, R.R. Arslanbekov, 
C. Wichaidit, W.N.G. Hitchon and V.F.Kovalev 

 
 
 
 
 
 
 
 
June 30, 2008       CFDRC Report: 8840-03 

 
 

 
 
 

Prepared for 
Dr Fariba Fahroo  

Air Force Office of Scientific Research 
875 North Randolph Street,  

Suite 325, Room 3112 
Arlington, VA 22203 

 
 

Air Force STTR Phase I Contract: FA9550-07-C-0069 
 



 

 i

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
6/30/08 

2. REPORT TYPE 
Final 

3. DATES COVERED (From - To) 
9/1/07 – 6/30/08 

4. TITLE AND SUBTITLE 
A Computational Framework for Multi-Scale Simulations 

5a. CONTRACT NUMBER 
FA9550-07-C-0069 

of Weakly Ionized Plasmas 
 

5b. GRANT NUMBER 
 

 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
V.I.Kolobov, R.R. Arslanbekov, 

5d. PROJECT NUMBER 
 

C. Wichaidit, W.N.G. Hitchon 5e. TASK NUMBER 
 

and V.F.Kovalev 5f. WORK UNIT NUMBER 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

CFD Research Corporation 
215 Wynn Drive 
Huntsville, AL 35016 
 
 

 
 
 
 
 

 
8840 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
Air Force Office of Scientific Research   
875 North Randolph Street   
Suite 325, Room 3112  11. SPONSOR/MONITOR’S REPORT  
Arlington, VA 22203        NUMBER(S) 
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
Distribution A 
 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
The goal of this STTR project is to develop a unified computational framework integrating adequate 
physical models for simulating complex non-equilibrium plasmas. The project aims to classify 
possible scenarios of plasma dynamics and develop general recipes for clustering phase space into 
sub-domains evolving at different scales and efficiently solve the dynamics for each scale. During 
Phase I, we developed a methodology to apply methods of Invariant Manifolds and the Renormalization 
Group for reduced description of plasma kinetics and the transition from micro to macro. We have 
tested state-of-the-art deterministic Eulerian and Lagrangian kinetic solvers (Vlasov, Fokker-
Planck, Boltzmann), investigated new algorithms (such as adaptive mesh in velocity space) and 
implemented basic plasma capabilities within the Adaptive Mesh and Algorithm Refinement framework. 
We prepared Phase II work plan where the proposed methodology could be fully developed and 
implemented in the next generation software for multi-scale plasma simulations. The new capabilities 
would be valuable for low-pressure weakly-collisional plasma systems with stochastic electron 
heating and anomalous skin effect, and for high-pressure discharges with runaway electrons, e-beams, 
sparks and streamers. 

15. SUBJECT TERMS 
Multi-Scale Simulations, Weakly Ionized Plasmas, Renormalization Group, Slow Invariant 
Manifolds, Particle kinetics, Boltzmann equation, Fokker-Planck, Stochastic Heating 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION 
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
Dr Fariba Fahroo 

a. REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

  
 

19b. TELEPHONE NUMBER (include area 
code) 
 

 Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 

 



 

 i 8840?Final 

TABLE OF CONTENTS 
Page 

 
EXECUTIVE SUMMARY.........................................................................................................iv 
1. APPLICATION OF INVARIANT MANIFOLD AND RENORMALIZATION GROUP 

METHODS TO PLASMA MODELING .............................................................................1 
1.1 Slow Invariant Manifolds.............................................................................................1 
1.2 Collisionless Plasma.....................................................................................................1 
1.3 Collisional Plasma........................................................................................................4 

2. KINETIC SOLVERS FOR COLLISIONLESS PLASMAS................................................7 
2.1 Eulerian Kinetic Solvers...............................................................................................7 
2.2 DC boundary layer in collisionless plasma ..................................................................9 
2.3 Convected Scheme .....................................................................................................12 

3 BOLTZMANN SOLVER WITH ADAPTIVE MESH IN VELOCITY SPACE...............14 
3.1 BGK Collision Integral ..............................................................................................14 
3.2 Ions in a DC electric field with charge-exchange collisions ......................................15 
3.3 Electron isotropization under effect of elastic collisions ...........................................17 

3.3.1 Isotropization of an initially non-isotropic distribution .....................................18 
3.3.2 The case with initially non-isotropic and shifted distribution without force .....18 
3.3.3 The case with initially isotropic distribution and force......................................19 

4. FLUID PLASMA MODELS..............................................................................................21 
4.1 Basic Plasma Solver with Dynamically Adaptive Mesh............................................21 
4.2 Adding Forces in the gas kinetic solvers continuum..................................................22 

5. CONCLUSION...................................................................................................................24 
6. REFERENCES ...................................................................................................................25 
 
 



 ii 8840/Final 

LIST OF FIGURES 
Page 

 
Figure 1. Illustration of the reduced dynamics. The dynamic variable W(t) approaches to  

and after some time is eventually confined in the manifold M of lower 
dimensionality...........................................................................................................1 

Figure 2. A hierarchy of transport models for electrons (from [8]) .........................................5 
Figure 3 Electron kinetics in external electric field for arbitrary ratios of scattering and 

deceleration ...............................................................................................................6 
Figure 4.  UFS ion density and temperature from (on the left) for different size of velocity 

and space mesh. Ion temperature from Shoucri's code and UFS (on the right)........7 
Figure 5. Ion distribution functions from Shoucri's code (left) and UFS (right). ....................8 
Figure 6. Electron distribution functions from Shoucri's code at electrode (left) and spatial 

distribution of electron temperature (right). .............................................................9 
Figure 7. Particle densities (left) and temperatures (right) for tei=30....................................10 
Figure 8. Electron velocity distributions (left) and ion velocity distributions (right) at 

different spatial positions for tei=30. Numbers denote spatial mesh points for the 
total of 400 mesh points..........................................................................................11 

Figure 9. Comparison of density profiles (left) and temperature profiles (right) for tei=10 and 
tei=30. .....................................................................................................................11 

Figure 10. Comparison of density profiles (left) and temperature profiles (right) for tei=10 and 
tei=30. .....................................................................................................................12 

Figure 11 Electron distribution functions plotted versus kinetic energy (left) and velocity 
(right) for different points inside the sheath. ..........................................................13 

Figure 12 Time evolution of the ion and electron densities in the sheath...............................13 
Figure 13. Instantaneous Computational mesh and velocity distribution (color) ....................15 
Figure 14. The velocity distribution function with respect of xξ  for 0yξ = ...........................15 
Figure 15. Ion distribution function at three moments in time: initial, intermediate and  

final. ........................................................................................................................16 
Figure 16. Ions distribution functions along 0yξ =  line for different time moments (left) and 

distribution functions vs yξ  lines for different xξ  positions (right). ......................16 
Figure 17. Evolution of macroparameters of the simulated ion distribution function in an 

external field under charge-exchange collisions.....................................................17 
Figure 18. Initial and final distribution function for case with initially non-isotropic 

distribution. .............................................................................................................18 
Figure 19. Time evolution of temperatures for the case with an initially non-isotropic 

distribution. .............................................................................................................18 
Figure 20. The computational grid and the initial, intermediate and final distribution functions 

(color) under the action of the isotropization integral. ...........................................19 
Figure 21. Time evolution of macroparameters of a distribution function with initial non-zero 

velocity....................................................................................................................19 
Figure 22. Distribution function at three time moments under the action of the isotropization 

integral and in presence of force.............................................................................20 
Figure 23. Time evolution of macroparameters of a distribution function under the action of 

the isotropization integral and in presence of force. ...............................................20 
Figure 24. a) 3D simulation of a streamer development from an initial perturbation in N2: 

p=400 Torr, E=34 kV/cm, b) 2D axi-symmetric simulation of streamer 
development between a needle-like elliptic cathode (size 2×1 cm) and a flat anode: 
p=760 Torr, cathode potential -600 kV, c) interaction of two avalanches during 



 iii 8840/Final 

their transition to streamers: p=760 Torr, E=65 kV/cm, computational domain  
2×1 cm and initial plasma density 5×1010 cm-3.......................................................22 

Figure 25. Density, velocity and temperature for the problem of a gas in a periodic 
gravitational field. ...................................................................................................23 



 iv 8840/Final 

 
EXECUTIVE SUMMARY 

 
The goal of this project is to develop a unified computational framework for multi-scale 
simulations of weakly-ionized non-equilibrium plasmas. This Final Report for Phase I covers 
the performance period from September 1, 2007 through June 30, 2008. The main results of 
the work can be summarized as follows 
 

• We have investigated methods of Renormalization Group and Slow Invariant 
Manifolds in application to plasma modeling.  Using the point symmetry group for the 
Vlasov-Maxwell system, we obtained exact solutions for the dynamics of collisionless 
plasma. The interpretation of the solutions in terms of invariants of the group 
transformation and invariant manifolds was achieved – the particle distribution 
functions were related to invariants of the group transform. The road towards obtaining 
approximate symmetries due to small parameter (electron/ion mass ratio) in the plasma 
was outlined. We prepared detailed work plan for application of these methods during 
Phase II research.  

• We have tested different Eulerian and semi-Lagrangian kinetic solvers for collisionless 
plasmas. An efficient high-order Vlasov-Poisson solver has been demonstrated for self-
consistent simulation of a collisionless boundary layer. Better understanding of the 
collisionless particle kinetics in a DC sheath was achieved as reflected in the book 
chapter submitted for publication. 

• We have developed a local Boltzmann solver with adaptive mesh in velocity space and 
tested this solver for simple collision integrals describing electron and ion collisions in 
weakly ionized plasmas.  

• We have developed hydrodynamic models of plasmas with octree based dynamically 
adaptive Cartesian mesh and demonstrated the model capabilities for streamer 
simulations.  

• The paper "Streamer Simulations with Dynamically Adaptive Cartesian Mesh" was 
prepared and accepted for publication in a special issue of IEEE Transactions on 
Plasma Science devoted to "Images in Plasma Physics". 
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1. APPLICATION OF INVARIANT MANIFOLD AND RENORMALIZATION 
GROUP METHODS TO PLASMA MODELING 

 
The renormalization group (RG) method has been recently demonstrated as a powerful tool for 
reduction of evolution equations in terms of invariant manifolds. It was recognized [1] that the 
reduction of evolution equations is a natural extension of the well-known asymptotic method 
by Krylov, Bogoliubov and Mitropolski for nonlinear oscillator – the later is in fact an RG 
theory although the term RG is not used. Using this methodology, the Boltzmann equation was 
derived as an RG equation [2], the Navier-Stokes equations were derived from the Boltzmann 
equation [3], and stable post-Navier-Stokes equations have been obtained [4] instead of the 
unstable Burnett equations.  For a classical viscous flow problem, the RG calculations have 
lead to a new prediction for the drag coefficient, which can reproduce and surpass the results of 
matched asymptotics [5]. 
 
1.1 Slow Invariant Manifolds 
 
The problem of model reduction in physical kinetics was recognized as a problem of time 
separation and construction of slow invariant manifolds. To illustrate these notations, consider 
an n-dimensional dynamical system governed by the evolution equation 

( , )d t
dt

=
W F W      (1) 

When the dynamics is reduced to an m-dimensional system (m<n), the vector W(t) approaches 
a well–defined m-dimensional manifold M embedded in the n-dimensional phase space (see 
Figure 1).  The geometrical object M is called an attractive manifold. If after some time W(t) is 
confined in the manifold M, then M is called an invariant manifold. Furthermore, if the 
dynamics on M is slow, M is called a slow manifold. There is no explicit definition of slow 
invariant manifolds without explicit small parameter in the system. It was demonstrated how 
RG method helps construct invariant manifolds and give reduced dynamics on them [3]. The 
concept of invariant manifolds for physical and chemical kinetics was explicitly developed 
very recently [6,7]. 
 

 
Figure 1. Illustration of the reduced dynamics. The dynamic variable W(t) approaches to 

and after some time is eventually confined in the manifold M of lower dimensionality. 

 
1.2 Collisionless Plasma 
 
During Phase I, we have studied how the RG and invariant manifold concepts can be applied to 
modeling weakly ionized plasmas. We first tried to apply strict results of quasi-neutral plasma 
theory to interpret dynamics of the plasma-wall transition layer (presheath in CCP, and skin 
layer in ICP). The analytical expression for the spatio-temporal evolution of the distribution 
function of electron and ions having initial Gaussian distribution in space and Maxwellian 
distribution in velocities has been obtained by RG methods in the form  
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( ) ( )22
0

2 2 2
Te Ti TeTe

1 /1exp
v 2 1 v / v2 v

e e v u m Mn ef
m

τ
π

⎡ ⎤⎛ ⎞− ++ Φ⎢ ⎥⎜ ⎟= − −
⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

,   (2a) 

( ) ( )2 22
0

2 2 2
Ti Te TiTi

11exp
v 2 1 v /v2 v

i i v un ef
m

μτ
π

⎡ ⎤⎛ ⎞+−+ Φ⎢ ⎥⎜ ⎟= − +
⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

,   (2b) 

where the local mean velocity of the plasma u  and the electric potential Φ  are defined as 
22

2 2 2 2, .
1 2 (1 ) (1 )

e i
s

T Tu c
e

μςτ ς
τ τ μ

−
= Φ = −

+ + +
 

Here ,tτ = Ω  /x Lς = , /m Mμ = , ( ) /( )s i ec T T M m= + +  is the sound velocity based on the 
initial temperatures of electron and ions, /sc LΩ = , and L is a characteristic scale of plasma 
non-uniformity (not necessarily equal to the Debye radius Der ). This solution is valid for 
arbitrary ratio of the electron and ion mass, /m M , and arbitrary values of the temperatures, eT  
and iT . 
 
The analytical solution (2) describes many features observed in our simulations of the 
collisionless plasma-wall transition layer (see below) and results of other authors. In particular, 
during the time evolution of the initial perturbation, a shift of the mean velocity of electron and 
ions takes place, and the temperature of ions decreases. Due to the difference of electron and 
ion mass, M m> , ion acceleration is more pronounced since for the thermal velocities Ti Tev <v , 
and the electron acceleration is negligible.  
 
During Phase I,  we obtained approximate solutions of unsteady Vlasov-Maxwell system using 
RG algorithms and slow invariant manifolds. We considered one-dimensional system 
described by the system of kinetic equations 
 

v 0 ,
v

e Ef f f e i
t x m

α α α
α

α
α α

α∂ ∂ ∂
+ + = =

∂ ∂ ∂
 (3) 

 
with additional equations for the electric field 
 

4 0, 4 0,E Ej
t x

π πρ∂ ∂
+ = − =

∂ ∂
  (4) 

and nonlocal material relations 

0, v , v vj e f d j e f d
t x

α α
α α α α α

α α

ρ ρ∂ ∂
+ = = =

∂ ∂ ∑ ∑∫ ∫  (5) 

We obtained solutions of this system for several cases described below.  
 
Example 1. This case corresponds to generalization of the quasineutral solution (2) for non-
zero initial velocity of the plasma constituents having Maxwellian velocity distribution 
functions. Such a solution can be obtained by applying Galilean transformation to the solution 
obtained previously. From the physical stand point this operation is equivalent to 
transformation to a moving reference frame, obtaining solution in this frame, and then 
returning to the laboratory reference frame. The  velocity distribution functions and electric 
field in the plasma are given by 
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22
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It follows from this solution that the mean particle velocity at x=0, which is equal to u at t=0, 
decrease monotonically with increasing time t. The particle density reaches maximum value at 
the point / su cζ τ= , which is moving with time. It is exactly at this point that mean velocity 
keeps its initial value, u. In fact, the solution (6) describes a localized perturbation moving 
across the plasma with velocity u. 
 
The solution (6) can be obtained by other means. An alternative approach consists in seeking a 
solution to kinetic equations that is invariant with respect to a group of local transformations 
with a generator, which appears as a linear combination of generators of space and time 
translations and the projective group generator. 
 
The solution (6) is a particular case of a more general solution, which does not assume 
Maxwellian VDF. In the general case, the dependence of the electric field on spatial coordinate 
may deviate from the linear dependence (6b). This general solution has the form 
 

( )
( )

222

22 2

1( ) v ( )
2 1 2 1

ss c uc u e
f F I I J

m
α α α α α

α
α

ζ ττζτ
τ τ

−++ ⎛ ⎞= = − + + Φ⎜ ⎟+⎝ ⎠ +
 (7a) 

 

( )
( )

3/ 2 22

1 , ,
11

sc udE J
dJ

ζ τ

ττ

−Φ
= − =

++
   (7b) 

 
The dependence of ( )JΦ  is determined by the initial VDFs of the particles and by the 
condition of plasma quasineutrality.  The quantities Iα  and J in (7) are invariants of the group 
generator constructed from the generators of time and space translations and the projective 
group generator. The VDFs do not change under group transformation, i.e. they remain 
invariant, and their relation to the initial VDFs expressed through Iα  and J  defines an 
invariant manifold corresponding to the solution of the problem. 
 
Example 2. As shown in the previous example, the group of Galilean transformations 
transforms any solution of the kinetic equations with zero mean velocity to a solution with 
non-zero mean velocity. As stated above, one can obtain the same solution by an alternative 
approach consists in seeking a solution to kinetic equations invariant under the local 
transformation group with a generator, which is a linear combination of generators of time and 
space translations; in the general case one can also add the generator of the Galilean group. 
Since all these group generators are admitted by the original Vlasov-Maxwell system without 
quasineutrality assumption used for obtaining (6), the solution (8) below is valid for arbitrary 
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relation between the Debye length and the characteristic spatial scale of the plasma 
 

( )21( ) v ( ),
2

ef F C C u at a
m

α α α α α
α

α

= = − − + Λ + Φ Λ  (8a) 

 
2

, ,
2

d atE x ut
d
Φ

= − Λ = − −
Λ

    (8b) 

 
The dependence of ( )Φ Λ  is found from the initial VDFs with the help of Poisson equation. 
The solution (8) is a stationary solution of the Vlasov kinetic equations obtained in a reference 
frame, which moves with initial velocity u and acceleration a. The solution (8) has similar 
group interpretation as the solution (7), namely Cα  and Λ  are invariants of the corresponding 
group generator, which describes the solution to the problem. 
 
The obtained solutions to the one-dimensional Vlasov-Maxwell system are quite obvious from 
the physical standpoint and thus could be obtained earlier. However, specific solutions to 
particular problems could be very useful from different points of view. In particular, the 
developed procedure can be applied to two-component plasmas with prescribed ion motion. 
The ions can be assumed immobile with given distribution of density, or moving in space with 
a given velocity. The corresponding expressions can be obtained from the general formulas. 
 
It appears to be difficult to obtain general solutions for arbitrary initial/boundary conditions. 
However, using the concept of slow invariant manifolds, one can expect to construct an 
approximate symmetry (RG type) for the Vlasov-Maxwell system, which would allow one to 
construct solutions for quite arbitrary initial conditions. However, such a procedure would 
require serious research work. 
 
1.3 Collisional Plasma 
 
During Phase I, we have also studied how invariant manifold methods could be used for 
reduced description of weakly ionized plasmas with collisions among particles. The difference 
between scattering rate and the energy loss rate for electrons moving in a neutral gas under 
effect of external electric field could be utilized for the reduced description of electron kinetics. 
For slow electrons with energies less than the excitation potential of atoms (~10 eV), scattering 
dominates over energy loss. For these electrons, the reduced description is possible along the 
following lines: Boltzmann kinetic equation → two-term Spherical Harmonics Expansion 
(Fokker-Planck Equation), nonlocal approach → hydrodynamic model. For fast electrons, the 
relative importance of scattering and energy loss can be opposite compared to slow electrons. 
For fast electrons, small angle scattering dominates resulting in electron beams and runaway 
electrons in high electric field. We anticipate that the Invariant Manifolds and RG methods can 
be applied for the renormalization of the Boltzmann collision integral and reduced description 
of collisions in terms of nonlocal friction force that depends on the distribution function.  
 
We have identified several small parameters that can be used for reduced description of the 
system. These are 

• the ratio of electron to ion(atom) mass /e am m  
• the ratio of plasma to gas density, /en Nη = (ionization degree) 
• the ratio of inelastic to elastic collision frequencies for electrons, * /ν ν . 
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The first one is probably the most important and defines key features of gas discharge physics. 
As a result of the large difference between the electron and atom mass, electrons respond 
nearly adiabatically to changes of the external electromagnetic fields, and plasma shields the 
fields with the (fast) electron time scale. The ion transport and ionization processes occur with 
(slow) ion time scale. Collisionless invariants (such as total energy (kinetic plus potential)) are 
important characteristics of the Vlasov-Maxwell system. Small deviations from the adiabatic 
electron motion can be responsible for the collisionless (stochastic) electron heating – the 
concept proposed for detailed Phase II studies. 
 
Small ratio of inelastic to elastic collision frequencies for electrons at energies of the order of 
the excitation potential of atoms (~10 eV) is another important parameter enabling reduced 
description of electron kinetics in gas discharges. As a result of / 1e am m  and * / 1ν ν , the 
reduced description of electrons can proceed along the following lines: Boltzmann Transport 
Equation -> two-term Spherical Harmonics Expansion (Fokker-Planck Equation), nonlocal 
approach -> hydrodynamic model (see Figure 2). The Fokker-Planck approach to simulation of 
electron kinetics in collisional gas discharge plasmas was implemented in the commercial 
software for plasma simulations developed at CFDRC [8]. Many aspects of the kinetic theory 
of gas discharges [9] can be interpreted in terms of invariant manifolds. In particular, the 
procedure of spatial averaging of Bernstein-Holstein-Tsendin for calculation of the electron 
distribution function in DC and RF discharges (nonlocal approach) can be recognized as a 
constructive method for creating slow invariant manifold for electron kinetics. 
 

 
Figure 2. A hierarchy of transport models for electrons (from [8]) 

 
For fast electrons, the relative importance of scattering and energy loss can be quite opposite 
compared to slow electrons. Possible scenarios of EDF formation in a steady electric field E 
for arbitrary rates of scattering and deceleration depicted qualitatively in Figure 3 taken from 
Ref. 10. 
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In the domain a both the EDF body and its tail are 
almost isotropic. The random walk in energy occurs 
with a step eEλ , which is small with respect to the EDF 
characteristic scale 1ε , so one can use the concept of 
diffusion in energy with a diffusion coefficient 

( )2(v) ν / 3D eEε λ= . In the domain b the energy loss 
can be treated as quasi-elastic and the distinction 
between the EDF body and tail disappears.  In the 
domain c the random walk step eEλ  is small, therefore, 
the EDF body can be approximated by an isotropic 
"pipe-line" EDF. In the tail, however, inelastic collisions 
are very frequent, resulting in a large anisotropy with no 
electrons moving against the field. In the domain d, both 
the EDF body and tail are strongly anisotropic, and a 

needle-like EDF along the electric field is formed at energies 1w ε> . A small isotropic halo 
from elastically scattered electrons contains a small fraction of the total number of electrons. 
Fast electrons experience small angle scattering and can penetrate deeply into a dense gas 
producing non-local ionization in the areas with no electric field. The problem of fast electron 
kinetics in atmospheric pressure plasmas has recently attracted increased attention due to 
numerous technological applications. We have previously developed simplified models for the 
fast electron transport and have identified the problem of runaway electrons as a target area for 
Phase II research. It is anticipated that the Invariant Manifolds and RG methods can also be 
applied for the renormalization of the Boltzmann collision integral and reduced description of 
collisions in terms of nonlocal friction force that depends on the distribution function. An 
example of such a description can be found in [11]. 
 

 

Figure 3 Electron kinetics in 
external electric field for arbitrary 

ratios of scattering and 
deceleration 
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2. KINETIC SOLVERS FOR COLLISIONLESS PLASMAS 
 
We have tested accuracy and performance of several Eulerian and semi-Lagrangian kinetic 
solvers. We have applied a high-order Vlasov-Poisson solver for self-consistent simulation of a 
boundary layer in collisionless plasma. 
 
2.1 Eulerian Kinetic Solvers 
 
Three Vlasov solvers have been tested for a simple case related to DC sheath in gas discharge 
plasmas. The first solver is an extension of the UFS kinetic solver [12] with added electric 
force. The second  solver was generously provided by Dr. Shoucri [13]. The third solver is the 
Convective Scheme solver described in [14]. We considered electric field in the form 
 

( ) / , 0
( )

0
m m m

m

A s x s x s
E x

x s
− < <⎧

= ⎨ >⎩
 (9) 

 
which corresponds to the potential [ ]( ) (1 / ) 1 (1 / ) / 2m m mx As x s x sϕ = − − − + . The particles are 
injected at mx s=  with a velocity distribution function 

( )( ) ( )2 2
0( , ) exp / 2 exp / 2x y x yf v v v V v= − − −  and either accelerated or decelerated by the 

electric field in the sheath (depending on sign of the electric charge). The analytical solution 
for the VDF has been found in the form  
 

( ) ( )
2

2 2
0( , ) exp 2 ( ) / 2 exp / 2x y x yf v v v x V vϕ⎛ ⎞= − + − −⎜ ⎟

⎝ ⎠
  (10) 

 
According to this solution, the ion VDF in the plane ( , )x yv v  is deformed (become narrower 
along xv ) during ion acceleration by the DC field. This means that the ion temperature T 
decreases in the sheath.  
 

Figure 4.  UFS ion density and temperature from (on the left) for different size of velocity 
and space mesh. Ion temperature from Shoucri's code and UFS (on the right) 
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Figure 4 (left part) shows the UFS numerical solution for 90ms = , 0 10V = , 8A = . This force 

corresponds to the potential (0) 360ϕ =  and the mean velocity is v(0) 820 28.6= = . It is seen 
that even with the spatial mesh of 200 points and velocity mesh of 250 points we can not 
reproduce the analytical profile of the ion temperature with the UFS code. The right part of 
Figure 4 shows the temperature profiles obtained with the UFS and S-codes. The UFS code 
uses second order scheme with van Leer limiter, the S-code uses cubic interpolation. The S-
code reproduces analytical result even for (100,120) nodes. The UFS fails even for (200,250) 
nodes. 
 
Figure 5 shows velocity distributions from S-code and UFS for potential drop 400. The UFS 
results are for 200 nodes in physical space and 250 nodes in velocity space. The S-results are 
for (200, 240), (100,120) and (50,60) nodes.  
 

Figure 5. Ion distribution functions from Shoucri's code (left) and UFS (right). 

 
For 0 0V = , the velocity distribution remains isotropic, and the temperature should be constant 
in the sheath. Figure 6 shows the electron distribution function at the electrode and temperature 
distributions from the Shoucri's and UFS codes. The potential drop is –8. The UFS results are 
for 200 nodes in physical space and 100 nodes in velocity space. The S-results are for 50 nodes 
in space and 140 nodes in velocity space. It is seen that the S-code reproduces the expected 
temperature profile with better accuracy. The temperature drop near the boundary is due to  
absorption of the fastest electrons at the boundary. 
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Figure 6. Electron distribution functions from Shoucri's code at electrode (left) and 
spatial distribution of electron temperature (right). 

 
2.2 DC boundary layer in collisionless plasma 
 
We have derived analytical expressions for the electron and ion velocity distribution functions 
in the collisionless DC sheath and verified results of the numerical solution of the Vlasov-
Poisson system [15] versus the analytical solution.  
 
The problem statement is described in details in [15]. Briefly, electrons and ions are injected 
from the right boundary (x=L) with given velocity distributions. The boundary at x=0 
corresponds to floating potential collecting charge. We use dimensionless variables introduced 
in [15], where space is normalized to the electron Debye length, time is in units of inverse ion 
plasma frequency, and velocity is in the units of ion acoustic speed, /s ec T M= .  A surface 
charge is built up at x=0 to equalize electron and ion currents to the wall in a steady state. The 
problem is characterized by two parameters: the ratio of electron to ion mass, xmei=m/M, and 
the ratio of electron to ion temperatures, /ei e it T T= . 
 
In our present simulations, L=20, ion time step tΔ = 0.01.  We solve electron Vlasov equation 
with Poisson equation in a sub-cycle with nturn steps and the electron time step /t nturnΔ  
(with nturn=60). The velocity space for electrons 4 / 4 /ei e eixm xmξ− < < , for ions 

17 / 0 /ei i eit tξ− < <  at eit = 30. The problem reaches a steady state at t~10 in less than an 
hour of computing time. Results shown below are for t=20. 
 
Figure 7 shows spatial distributions of particle densities and temperatures for tei=30. The 
electron density drops in the sheath because the electrostatic potential repels the electrons back 
to plasma. The analytical solution of the Vlasov equation for the electron velocity distribution 
function has the form  
 

exp( ) 2 ( ) /
( , )

0 2 ( ) /
ei

e
ei

x xm
f x

x xm

ε ξ ϕ
ξ

ξ ϕ

⎧ − < Δ⎪= ⎨
> Δ⎪⎩

    (11) 
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where 2 / 2 ( )xε ξ ϕ= −  is the total energy,  ( )xϕ is the electric potential measured in units of 

eT  , and ( ) (0) ( )x xϕ ϕ ϕΔ = −  . It is assumed that ( ) 0Lϕ = . The electron temperature is 
dropped in a vicinity of the wall due to the depletion of electron velocity distribution by fast 
electrons, which overcome the electrostatic potential barrier and escape to the wall. No 
electrons reaching the wall return back to plasma, and the electron velocity distribution 
function is zero at 2 ( ) / eix xmξ ϕ> Δ  (see Figure 8). 
 
The ion density drops because the electrostatic field accelerates the ions and their mean 
velocity increases while the ion current remains constant. The ion velocity distribution can be 
described by the analytical expression 

( )2
2

0exp 2 ( ) v / 2 , 0
( , )

0 0

ei
i

t x
f x

ξ ϕ ξ
ξ

ξ

⎧ ⎛ ⎞− + − <⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪ >⎩

   (12) 

It follows from this expression that the amplitude of the ion distribution remains constant, and 
the width of ( , )if xξ  with respect to velocity decreases in the sheath. The decrease of the 
IVDF width corresponds to decrease of the ion density and temperature ( )ixT x  in the sheath 
(see Figure 7). 
 

Figure 7. Particle densities (left) and temperatures (right) for tei=30. 
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Figure 8. Electron velocity distributions (left) and ion velocity distributions (right) at 

different spatial positions for tei=30. Numbers denote spatial mesh points for the total of 400 
mesh points. 

 
Figure 9 compares the distribution of density profiles and temperature profiles for tei=10 and 
tei=30.  It is seen that the sheath width is slightly larger at tei=10 compared to tei=30. 
 

 

Figure 9. Comparison of density profiles (left) and temperature profiles (right) for tei=10 and 
tei=30.  

 
Figure 10 shows the distribution functions for Ar, which can be compared with Figure 8 to 
understand changing of the velocity range with changing xmei parameter. 
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Figure 10. Comparison of density profiles (left) and temperature profiles (right) for tei=10 and 
tei=30.  

 
Our research described in this section allowed better understanding of particle kinetics in the 
collisionless DC sheath. The results were reflected in a book chapter [16] submitted for 
publication. 
 
2.3 Convected Scheme 
 
During Phase I, the academic partner at the University of Wisconsin has tested the Convected 
Scheme (CS) method for collisionless sheath problems.  The CS is a semi-Lagrangian solution 
to the Boltzmann equation, which offers advantages over standard methods of characteristics in 
that it naturally conserves density, energy and other variables, locally in phase space. It is 
believed to be more accurate than fully mesh-based (Eulerian) methods. The CS offers 
advantages over other methods in the "intermediate" regime where the mean free path is 
comparable to the spatial scales, due to its ability to, on one hand, take steps up to a fraction of 
the mean free path, and on the other, provide conservation at each step it takes. 
 
As a first step towards hybrid models, we have set up a self-consistent and time-dependent 
model for the electron and ion distribution functions in the RF sheath. In Figure 11 we 
compare CS results for the electron distribution to an analytical solution for a given 
distribution of the electrostatic potential; very close agreement is obtained. The results are 
consistent with Figure 8 obtained with the Eulerian Vlasov solver, which is especially 
revealing when the velocity distributions are plotted versus electron velocity rather than kinetic 
energy (see Figure 11). 
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Figure 11 Electron distribution functions plotted versus kinetic energy (left) and velocity 

(right) for different points inside the sheath. 
 
The time evolution of the ion and electron densities in the collisionless sheath at RF frequency 
200 MHz is shown in Figure 12. In these calculations, the electron density follows the 
Boltzmann law, and the Vlasov equation for ions is solved together with Poisson equation with 
boundary conditions for the potential 0(0) (1 cos( ))tϕ ϕ ω= +  at x=0 and ( ) 0Lϕ = . 0 200ϕ =  V. 
 

 
Figure 12 Time evolution of the ion and electron densities in the sheath 

 
In the future, we intend to run kinetic calculations for both the ion and electron distributions in 
the RF sheath, and develop methods to accelerate simulations taking advantage of the disparity 
of electron and ion mass. We will then perform analysis of the two sets of results obtained, to 
ensure that the CS solution for the electron distribution matches that obtained using the 
simplified relation.  
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3. BOLTZMANN SOLVER WITH ADAPTIVE MESH IN VELOCITY SPACE 
 
It is known that Lagrangian methods are more efficient than Eulerian methods in terms of 
computer memory because they use only those parts of phase space where the particles are 
present. The efficiency of Eulerian kinetic solvers can be increased by using phase functions or 
adaptive mesh in velocity space. In fact, some people believe that due to high dimension of 
phase space, adaptive mesh is a must for multi-dimensional kinetic simulations using Euler 
methods. Octree Cartesian mesh is particularly attractive for this purpose because there are no 
complex boundaries in velocity space.  
 
We have implemented local Boltzmann solver with adaptive mesh in velocity space for simple 
types collision terms. The local kinetic equation contains two parts: the transport in velocity 
space under action of an external force and the collisional part:  

( )

x

f eE t f S
t m ξ

∂ ∂
+ =

∂ ∂
     (13) 

The transport part was implemented (in 2D and 3D velocity space) using the finite volume 
formulation with second-order accuracy in time and space. The octree/quadtree data structure 
allowed dynamic grid adaptation. For mapping from one velocity grid to another, second-order 
accuracy scheme was used. The collisional part depends on the type of the collisional integral. 
We have implemented so far three types of collision integrals  
 

• the BGK collisional integral 
• the charge-exchange collisional integral for ions moving in a parent gas 
• the elastic (isotropization) part of the collision integral for electrons collisions with 

atoms (in the limit m/M → 0).  
 
For the BGK collisional integral, the use of adaptive meshes allowed us to avoid special 
corrections, which required before for coarse, non-adaptive grids. The isotropization integral 
for electrons was implemented using a special technique developed in our previous work to 
correctly treat leaps of particles from one phase cell to another on non-uniform and 
unstructured grids.  
 
All calculations presented below were very fast, taking from 30 sec to 10-20 min on a 2.2 GHz 
PC. This is due to the adaptive grid capabilities allowing us to minimize the number of velocity 
grid points to adequately describe the studied distribution functions.  
 
3.1 BGK Collision Integral  
 
We first tested a collisionless case for a time varying electric field, E = E0cos(ωt). We have 
confirmed that the density and temperature are conserved with high precision during the 
simulations, while the mean velocity oscillated with the field frequency ω. Then, the effect of 
collisions was investigated. The BGK collision term was used in the form ( )mf fν −  where mf  
is a Maxwellian distribution with prescribed density, temperature and mean velocity, and  ν  is 
the collision frequency. Figure 13 shows the computational mesh and 2D distribution function 
in velocity space ( , )x yξ ξ . Once can see that the velocity grid adapts on the features of the 
distribution function based on gradient of the velocity distribution function. Figure 14 shows 
the velocity distributions along xξ  for yξ =0 for two different times. The final distribution 
function (after about 500 collisional times) has two peaks. These peaks correspond to positions 
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in velocity space where the particles spend most of the time (where dE/dt is small and 
changing sign).  
 

 
Figure 13. Instantaneous Computational mesh and velocity distribution (color) 

 

 
Figure 14. The velocity distribution function with respect of xξ  for 0yξ = . 

 
Using adaptive mesh in velocity space allows accurate description of the velocity distribution 
function and its moments. An analytic expression for the mean velocity was obtained in a 
simple form: 
 

2 2
0 0exp( ) [1 exp( )] /[ ][ cos( ) sin( ) exp( )]mu u t u t E t t tν ν ν ω ν ω ω ω ν ν= − + − − + + + − −  

 
where 0u  is the initial velocity. The equation for temperature was solved numerically.  
 
The comparison of moments calculated from VDF with analytical results demonstrated very 
good agreement, thus proving that the numerical scheme is capable of maintaining high 
accuracy during simulations of long time evolution (here, about 500 collisional times). In 
addition, we have checked that the implemented BGK collision integral maintains the shape of 
the distribution function in the yξ -direction. The test showed that the Ty temperature remains 
constant over the simulated time interval with a 2% precision. 
 
3.2 Ions in a DC electric field with charge-exchange collisions 
 
For charge-exchange collisions of ions with a parent gas the collision integral can be  written 
in the form  [17]  

[ ]
3

1 1 1 1( ) ( ) ( ) ( ) | |i ex
R

S N f f dϕ ϕ σ= − −∫ ξ ξ ξ ξ ξ ξ ξ    (14) 

where ( )ϕ ξ  is a Maxwellian velocity distribution of the background gas atoms with density N 
and temperature T, exσ  is a charge exchange collision cross-section. 
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Consider ions with a mass M injected in DC electric field E and experiencing charge-exchange 
collisions with a steady background gas. The charge exchange collisions cannot change the 
velocity distribution orthogonal to the electric field direction. So, the velocity distribution is of 
the form x( ) ( ) ( )f Fξ ξ⊥= Φξ . The distribution function x( )F ξ  evolves in time until a steady 
state is reached. The analytical expression for the steady state distribution x( )F ξ  can be 
obtained in the form  

0

( ) exp ( )
x

x x ex x x
NMF C d
eE

ξ

ξ ξ σ ξ ξ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

∫    (15) 

Figure 15 shows results of the numerical solution of the 2D kinetic equation with adaptive 
mesh in velocity space for the ion distribution function under an applied force of magnitude 4 
and charge-exchange collision-frequency of 1. Figure 15 shows the calculated ion distribution 
function at three moments in time: initial, intermediate and final. One can see the grid 
adaptation on the features of the distribution function as it evolves in phase space. Figure 16 
shows the distribution functions along the y 0ξ =  line for different time moments (left) and 
distribution functions along xξ =const lines. One can see that the calculated steady-state 
distribution function compares well with the analytical solution. In the yξ -direction, the 
distribution function remains a Maxwellian with the temperature of the source function (which 
represents cold, motionless atoms on which charge-exchange occurs). 
 

 

 

 
Figure 15. Ion distribution function at three moments in time: initial, intermediate and 

final. 
 

Figure 16. Ions distribution functions along 0yξ =  line for different time moments (left) and 
distribution functions vs yξ  lines for different xξ  positions (right). 

 
Figure 17 shows evolution of macroparameters of the simulated ion distribution function in an 
external field under charge-exchange collisions. One can see that the density is well conserved 
(variation is less than 0.05%), the velocity and temperatures reach steady state in around 5-6 
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collision times. One can also notice that the temperature (or average energy) in the field 
direction (here, Tx) becomes about 300 times larger than the transversal one (here, Ty), which 
itself remains constant (recall that the charge-exchange collision integral does not change the 
distribution function in the transversal direction). These facts provide evidence of that the 
numerical scheme based on adaptive mesh is capable of handling such large differences in 
parameters of the distribution function. 
 

Figure 17. Evolution of macroparameters of the simulated ion distribution function in an 
external field under charge-exchange collisions. 

 
3.3 Electron isotropization under effect of elastic collisions 
 
The ratio of electron to atom mass, 4/ 10m M − , is a small parameter of the system. In this 
case, the Lorentz gas model can be used to describe elastic collisions of electrons with gas 
molecules. The collision integral is a sum of two terms, 0 1

e e eS S S= + . The first term describes 
momentum relaxation in the limit / 0m M →  (Ref.  [18], Eq. 6.1.18) 
 

[ ]
2

0 3 24 ( ) ( , ) ( 2 ) ( )e
S

S N d l I l f fδ ξ= + ⋅ + −∫ l ξ l ξ l ξ    (16) 

where the vector l corresponds to the change of v due to the collision, ' = +ξ ξ l . This term 
vanishes, 0 0eS = , for any isotropic distribution, since | 2 | ξ+ =ξ l . The differential scattering 
cross section ( , )I lξ  is determined by the intermolecular interaction potentials. For hard 
spheres with diameter a, 2( , ) / 4I l aξ = . The second term, 1

eS , accounts for energy exchange 
between the light and heavy particles, it can be written in a differential (Fokker-Planck) form. 
 
The integration (16) takes place over a sphere in velocity space and can be alternatively written 
as 
 

 
2

0 ' 'v ( ,| |) ( , ) ( , )e
S

S N f f dσ ξ ξ ξ⎡ ⎤= Ω−Ω Ω − Ω Ω⎣ ⎦∫     (17) 

where Ω  is a velocity angle on  a unit sphere 2S  in velocity space, ξ=ξ Ω , and σ  is the 
differential collision cross section, which depends on the initial speed and the angle 

'arccos( )θ = ⋅Ω Ω  between the initial and final electron velocity. When the scattering is close 
to isotropic '( ,| |) ( )σ ξ σ ξΩ−Ω = , the integral (17) is further simplified   
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2

[ ( , ) ( , ) ]el
e

S

S f f dν ξ ξ= − Ω − Ω Ω∫     (18) 

where ( )Nν ξσ ξ= is the collision frequency.  
 
This section describes calculation performed with the collision integral (17) for the simplest 
case of isotropic scattering (918). We first studied two cases without external force. 
 
3.3.1 Isotropization of an initially non-isotropic distribution  
In this case the initial distribution function is has an elliptic shape with zero mean velocity and 
Tx = 3Ty. This case is important for testing how the implemented collision integral conserves 
the moments of the distribution function. The computational grid in velocity space and the 
initial and final velocity distribution functions are shown in Figure 18. The evolution of the Tx 
and Ty temperatures calculated from the velocity distribution function is shown in Figure 19. 
 

        
Figure 18. Initial and final distribution function for case with initially non-isotropic 

distribution. 
 

 
Figure 19. Time evolution of temperatures for the case with an initially non-isotropic 

distribution. 
 
3.3.2 The case with initially non-isotropic and shifted distribution without force 
In this case, the initial velocity distribution function has non-zero velocity mean velocity, xξ = 
0.3, and temperature T=0.005. Figure 20 shows the dynamics of the isotropization process. The 
corresponding macroparameters are shown in Figure 21. The density is conserved with a 
machine precision. The mean velocity drops to zero in about two collisional times. The 
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temperatures Tx and Ty evolve towards a single temperature with the same time scale. 
 

   
Figure 20. The computational grid and the initial, intermediate and final distribution 

functions (color) under the action of the isotropization integral.  
 

Figure 21. Time evolution of macroparameters of a distribution function with initial non-
zero velocity. 

 
3.3.3 The case with initially isotropic distribution and force 
Finally, a test with a force has been carried out. Figure 22 shows distribution function at three 
time moments under the action of the isotropization integral (frequency of 1) and in presence 
of force (amplitude of 0.25). One can see the distribution function moves in the direction of the 
force and at the same time evolves in the yξ -direction under the action of the isotropization 
integral (along |ξ |=const circles). The velocity grid dynamically adapts to the features of the 
instantaneous distribution function. The temperature (or average energy) grows with time (with 
slight difference of Tx and Ty), as see in Figure 23. Since there are no energy losses, the 
temperature will grow indefinitely.  
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Figure 22. Distribution function at three time moments under the action of the 

isotropization integral and in presence of force. 

Figure 23. Time evolution of macroparameters of a distribution function under the action 
of the isotropization integral and in presence of force. 

 
In order to test the implementation of the isotropization integral, we have carried a test with 
force of a coarse grid. The results with Maxlevel=7 show practically no difference with those 
on a fine grid (Maxlevel=8). The simulation with a Maxlevel=7 took only 30 sec of computing 
time.  
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4. FLUID PLASMA MODELS 
 
The fluid models of plasma utilize two (density and velocity) or three (density, velocity, and 
temperature) equations for electrons and ions coupled to electromagnetic solvers. During Phase 
I, we advanced fluid plasma models in two directions. 
 
4.1 Basic Plasma Solver with Dynamically Adaptive Mesh 
 
We developed new capabilities for fluid plasma simulations with dynamically adaptive 
Cartesian mesh using simple plasma model. The model contains transport/ionization of 
electrons and ions coupled to the Poisson equation for the electric field. This model is 
appropriate for simulation of collision-dominated high-pressure discharges. Our computational 
tool is unique in several aspects: i) plasma equations are solved with dynamically adaptive 
quadtree/octree Cartesian mesh, which provides an excellent compromise between the 
flexibility of unstructured meshes and the computational efficiency of structured meshes, ii) 
complex boundaries are represented using the volume-of-fluid approach enabling simulations 
of curved electrodes, iii) large dynamic range of grid refinement/coarsening (up to 10-12 
levels) provides high resolution of the streamer fronts. 
 
The efficient and accurate technique for grid refinement/coarsening is very important for 
simulations of streamers with dynamically adaptive mesh. It was found empirically that for 
reliable results, the following criteria had to be used: 
 

, , 1 , , , 1( ) ( ) 0.05max( ) and ( ) ( ) 2e i j e i j e j e i j e i jn r n r n n r n r+ +− < <  
 

1 1( ) ( ) 2 and ( ) ( ) 5j j i j i jr r r rν ν+ +< <E E  
 

where ne and ni are the electron and ion densities, E is the electric field and iν is the ionization 
frequency, and jr and 1jr +  denote neighboring cells.  
 
An example of 3D simulations of streamer development from an initial perturbation is shown 
in Figure 24a.  No branching of streamers has been observed in our simulations. No streamers 
develop in high electric fields, dumb-bell shape structures appear instead. Figure 24b shows 
2D axi-symmetric streamer development near a high-voltage needle-like cathode. The streamer 
propagates with a velocity by an order of magnitude higher than the electron drift velocity in 
the highest electric field in the gap. The calculated velocity agrees with classical estimates for 
the fast streamer velocity. Figure 24c illustrates streamer development from two spatially 
separated avalanches. Both negative and positive streamers expand with velocities higher than 
the electron drift velocity. The negative streamer velocity is 3 times higher than the drift 
velocity, the positive streamer velocity is about 2 drift velocities. The neighbor streamers get 
closer during their development; the field increases in the gap between the streamer tips, and 
ionization takes place along the line connecting the positive and negative tips.  

 
In all cases, the calculated fields near the streamer tips were of the order of the critical field 
corresponding to saturation of the ionization frequency with respect to the field strength. This 
implies that non-local ionization should play an important role in these regions. 
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Figure 24. a) 3D simulation of a streamer development from an initial perturbation in N2: 
p=400 Torr, E=34 kV/cm, b) 2D axi-symmetric simulation of streamer development between a 
needle-like elliptic cathode (size 2×1 cm) and a flat anode: p=760 Torr, cathode potential -600 

kV, c) interaction of two avalanches during their transition to streamers: p=760 Torr, E=65 
kV/cm, computational domain 2×1 cm and initial plasma density 5×1010 cm-3. 

 
4.2 Adding Forces in the gas kinetic continuum solvers   
 
We have studied numerical algorithms associated with external forces in the gas kinetic Euler 
and Navier-Stokes solvers. The implementation of forces in gas kinetic schemes and 
difficulties associated with “numerical heating” are described in Ref. [19]. For tackling this 
effect, we used the approach proposed in Ref. [20].  
 
In order to test different algorithms, we have considered a problem of a stationary gas in 

periodic field with potential 0
2sin( )

2
L x

L
πϕ ϕ

π
= − . The analytical solution to this problem 

corresponds to zero mean velocity,  constant gas temperature, and the density distributed 
according to the Maxwell-Boltzmann relation ( ~ exp( / )Tρ φ− ). The most difficult part in this 
benchmark test is to achieve small velocity and constant temperature. We have used 3 different 
algorithms to account for the force terms in our NS solver: the first approach uses a limiter 
(Van-Leer), the second case is without a limiter and the third one is from Ref. [19]), which 
accounts for the terms with the force inside the distribution function. The results using these 
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methods are compared in Figure 25. One can see that for the third method, the smallest 
velocity values could be obtained and the temperature is close to a constant. The results are 
very encouraging since they show that it is possible to achieve high precision by using the 
appropriate numerical implementation for the force term in gas kinetic schemes. This approach 
is planned for future coupling of the Boltzmann solution with the NS solution in the presence 
of forces in realistic plasma systems. 
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Figure 25. Density, velocity and temperature for the problem of a gas in a periodic 
gravitational field. 
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5. CONCLUSION 
 
During Phase I, we have investigated methods of Renormalization Group and Slow Invariant 
Manifolds in application to plasma modeling.  Using the symmetry group for the Vlasov-
Maxwell system, we obtained exact solutions for the dynamics of boundary layer in 
collisionless plasma. The interpretation of the solutions in terms of invariants of the group 
transformation and invariant manifolds was achieved – the particle distribution functions were 
related to invariants of the group transformation. The road towards obtaining approximate 
symmetries due to small parameter (electron/ion mass ratio) in the plasma was identified. We 
prepared detailed work plan for further development and application of this methodology for 
weakly ionized collisional plasmas in Phase II. We have analyzed and tested several numerical 
methods of solving the Vlasov and Boltzmann kinetic equations for charged particles in 
weakly ionized plasma. We found that cubic spline interpolation provides superior results 
compared to the second order scheme with van Leer limiter. The Eulerian Vlasov solver with 
cubit interpolation reproduced analytical results for the shape of the velocity distribution 
function with high accuracy using a reasonable number of mesh points. We have evaluated 
numerical methods of solving hydrodynamic plasma equations for different types of 
computational grid. We have developed a minimal plasma solver with dynamically adaptive 
mesh capabilities and demonstrated this solver for the problem of streamer development in 
different electric fields. We have submitted a paper to IEEE Transactions on Plasma Science 
entitled "Streamer Simulations with Dynamically Adaptive Cartesian Mesh", which was 
accepted for publication. 
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